TRANSMISSION PLANNING IN EUROPE: FROM CURRENT METHODOLOGIES TO A NEW SYSTEMIC APPROACH

[L’Abbate Angelo, ERSE (former CESI RICERCA), +39 02 3992 5802, angelo.labbate@erse-web.it]
[Migliavacca Gianluigi, ERSE (former CESI RICERCA), +39 02 3992 5489, gianluigi.migliavacca@erse-web.it]
[Fulli Gianluca, JRC – European Commission, +31 224 56 52 66, gianluca.fulli@ec.europa.eu]
[Gibescu Madeleine, Technische Universiteit Delft, +31 15 27 85792, m.gibescu@tudelft.nl]
[Ciupuliga Ana R., Technische Universiteit Delft, +31 15 27 84051, a.r.ciupuliga@tudelft.nl]

Overview

In Europe, as well as in other continents/countries, electricity industry in the latest years has been changing from a regulated structure dominated by vertically integrated utilities to a deregulated one organised in competitive markets. The liberalisation process in Europe, with the formation of regional electricity markets, has led to the facilitation of cross-border power trade; consequently, inter-area power exchanges in electricity networks have significantly increased and further growth can be foreseen. This generally results in more recurrent, and more frequently changing, congestion events on transmission networks.

Moreover, the penetration of Renewable Energy Sources for Electricity (RES-E), in particular onshore wind power plants, connected to the European grids, has been impressive in recent years; further grid connection of large-scale onshore and offshore wind power plants is expected, in order to meet Europe’s environmental and energy policy targets for 2020 and beyond. Then, the large amount of variable RES-E connected to the grids will have to be reliably integrated into the European power system. Additional factors regarding the security of electricity supply and environmental constraints may also impact on the development of the European power system [1].

These issues characterised by increasing uncertainties, mostly related to market decisions and growing variable RES-E deployment, pose new challenges on the European TSOs (Transmission System Operators), whose role has become more complex. In fact, in the past, before the electricity market liberalisation, in a centrally managed power system, the system operator generally controlled the generating units, the transmission and distribution networks and the demand. The goal of the planners was then to expand the transmission network in such a manner that both generation and transmission costs were minimised subject to meeting technical constraints to ensure a secure and economically efficient operation. Nowadays, in a competitive European system, the TSO, in charge of the only transmission system after the utilities’ unbundling, plans in general the expansion of its network minimising transmission costs and pursuing maximum social welfare, while meeting technical constraints to ensure a secure and economically efficient operation.

In this frame, transmission expansion planning criteria crucially need to be revised and expanded in order to design flexible, coordinated and secure transmission networks based on modern architectural schemes and including innovative technological solutions. More robust methodologies for transmission planning must be pursued to address the above challenges faced by TSOs.

The present work, carried out in the frame of REALISEGRID project [2], co-funded by the European Commission, aims to provide an updated picture of the current European transmission network planning challenges and practices and to put forward innovative planning methods and tools to monitor and steer the ongoing changes in the European power system. Particular attention is paid to the cost-benefit analysis on new grid investments, a fundamental stage of the planning process, towards a new systemic approach to transmission expansion planning.

Methods

The transmission planning process is firstly described. The basic tasks of transmission grid planners can be summarised as in the following: to forecast the power and energy flows on the transmission network, drawing upon a set of scenarios of generation/demand evolution for the targeted period; to check whether acceptable technical limits might be exceeded, in standard conditions as well as in contingency cases; to devise a set of possible strategies/solutions to overcome the criticalities and to select the option(s) having the best cost-benefit performance.

A review of current transmission planning practices, based on deterministic and probabilistic approaches, as implemented by the TSOs, is then executed in view of the new proposed approach, whose main focus relates to the cost-benefit analysis of the different transmission reinforcement options [3][4]. Towards this scope, it is crucial to quantitatively assess the various benefits provided by transmission expansion: this task, especially in a liberalised power system, generally represents a rather complicate stage as the evaluation strongly depends on the viewpoint taken for each considered benefit. The proposed methodology, instead, while considering the standpoints of the different players - TSOs, producers, customers - evaluates then the transmission expansion benefits from the society’s perspective: this is a systemic approach. The benefits provided by transmission expansion can be grouped as: system reliability improvement; quality and security increase; system losses reduction; market benefits; avoidance/postponement of investments; more efficient reserve management and frequency regulation; environmental sustainability benefits; improved coordination of transmission and distribution grids.
Concerning the reliability increase evaluation, it is important to note that, in addition to the traditionally used reliability indices (criteria-based approach), like EENS (Expected Energy Not Supplied), LOLP (Loss Of Load Probability), LOLE (Loss Of Load Expectation), new reliability indices, like VOLL (Value Of Lost Load), IEAR (Interruption Energy Assessment Rate) and WTP (Willings To Pay), are utilised in order to more consistently assess the economic impact of system reliability (value-based approach). These indices can be calculated by a power system simulation tool making use of probabilistic analyses.

Regarding the assessment of market benefits provided by a transmission expansion, the increased market competitiveness with a consequent reduction of market power of dominant players, where present, may lead to a market price reduction (‘strategic effect’); also, network congestions may be reduced allowing the unlock of more efficient power generation, both within one market and on a multi-national basis (‘substitution effect’). Both the strategic and the substitution effects can be measured by the Social Welfare (SW). When planning the utilisation of fast power flow controllers such as FACTS (Flexible Alternating Current Transmission System) and HVDC (High Voltage Direct Current), an additional benefit is the power flows controllability increase granted by these technologies.

The environmental sustainability benefits by transmission expansion, evaluated within the analysis, include: a better exploitation of a diversified generation mix, also including variable RES-E (e.g. wind); CO₂, NOₓ, SO₂ emissions savings, in presence of more efficient generation, including also RES-E; the reduction of conventional generation external costs (externalities); the decrease of internal (fossil fuel) costs. Transmission upgrades may also bring some additional environmental benefits in terms of land use reduction, visual impact abatement and electromagnetic fields (EMF) level decrease.

Other benefits which in the future may gain higher consideration relate to the improved interaction of transmission and distribution grids, within systems either experiencing high shares of distributed generation resources or even evolving towards so-called SmartGrids schemes by a considerable distributed generation deployment. A transmission reinforcement may indeed bring about a more effective exploitation of distributed generation resources, while also better coordinating them when installed in different distribution networks, multiplying then the trading opportunities.

Results

By reviewing the transmission planning practices carried out by the TSOs, the need of evaluating more combinations of load, (renewable) generation and international exchange by applying probabilistic approaches emerges with the goal of a more robust planning under a variety of possible scenarios. Major result of the present work is the development of a systemic approach to transmission planning process with its crucial cost-benefit analysis, quantitatively evaluating the several benefits provided by transmission expansion in a liberalised environment. The application of this methodology requires the utilisation of a simulation tool able to carry out detailed power system studies. In particular, the tool has to: be suitable for power system (optimisation) and market studies, especially for large size systems; carry out reliability studies (probabilistic criteria); address the quantification of transmission expansion benefits in a computationally efficient way; incorporate emission amount and cost calculations; be flexible, expandable and possibly linkable to other existing tools.

By the developed tool, it is then possible to calculate and evaluate the economic benefits resulting from a transmission system enhancement for the different players and for the society as a whole. The general methodology emerging from this work will be applied to an important case, namely the group of transmission projects belonging to the Trans-European Network priority axis "EL.2. Borders of Italy with France, Austria, Slovenia and Switzerland".

Conclusions

This work focuses on transmission planning, which will have to change and adapt to new situations and uncertainties mostly represented by market opening from one side and renewable integration on the other side.

After a review of transmission planning practices carried out by the TSOs, transmission planning criteria should be expanded to consider probabilistic approaches in order to deal with above uncertainties. Moreover, a crucial stage of the transmission planning process, the cost-benefit analysis, needs to systematically and quantitatively assess the several advantages provided by transmission expansion in a liberalised context. In this view, the present work develops and describes a new systemic approach to transmission planning, aiming to evaluate the different benefits not only from a single perspective but from the society point of view. For the application of this analysis a suitable power system tool has been then developed and tested.

References


The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 219123 (REALISEGRID project).